Print

M340

Description

Our most popular mid-temperature, smooth, plastic, semi-vitreous, buff burning, native functional stoneware.

Plainsman Polar Ice, P300, M370 and M340 (Whiteware transparent glaze on the porcelain, Stoneware transparent glaze on the M340).

The M340 is made from a combination of our A3 and B stoneware materials (as are H550, Buffstone, L212). It is our most popular body (widely used in schools, by hobbyists, and professional potters. Compared to bodies made from refined industrial minerals, M340's diversity of ultimate particle sizes produces a body of much higher dry strength. Its parent materials are also highly consistent, pure, and free of foreign particles. In fact, even without grinding, 95% of a raw sample of M340 will wash through a 200 mesh sieve.

Process Properties

M340 has medium to high plasticity and feels smooth (having a slight texture). There is some distribution of particle sizes in the plus 200 mesh range, these provide channels for faster drying than other bodies you may have used. You should have few problems drying smaller pieces, but care and attention are necessary when making larger pieces, especially flat plates, shallow bowls and sculptural ware. Make sure that the focus is on evenness of drying rather than speed; if sections of a piece dry faster, then either slow these sections down or slow down the drying of the entire piece to effect a more even process.

Firing

Fired test bars of M340 (left) and M325. Fired at cone 8, 7, 6, 5 and 4 (top to bottom).

M340 fires from a straw color at cone 4 to patchy stone-grey-buff at cone 6 to grey by cone 8 (the greying begins by cone 7). M340 is best used at cone 6. This temperature is a functional compromise between the maximum vitrification of cone 8 (where it will also tend to warp or bloat) and the higher porosities in the cone 4-5 range. We typically add 2-3% talc flux to maintain fine control over the body's fired maturity at cone 6 (and reduce the incidence of quartz inversion cracking problems).

Glazing

M340 is quite fine particled in its natural state and takes glazes very well, producing fine homogeneous surfaces. It is high in silica and will craze fewer glazes porcelains. However crazing is possible if a glaze is high in sodium (i.e. from soda feldspar or nepheline syenite) or is very low in silica or alumina (little clay or silica). As a general rule, unbalanced glazes containing high feldspar and little kaolin or silica are usually a problem. For functional ware check glaze fit using a boiling water:ice water immersion test.

Since M340 does contain some iron oxide, brightly colored glazes will tend be muted compared to porcelain. This can be handled by using a well fitted slip between body and glaze or opacifying the glaze more.

Glaze Recipes

Commercial brush-on glazes offer many colors and surfaces. For functional ware check for glaze fit (vital for quality functional ware). Do not assume food safety of brightly colored glazes in your kiln and with layering without a leach test (e.g. GLLE test). Consider using transparent or white liner glazes for food surfaces.

Mixing your own glazes is practical (with our clear guidelines even beginners can make dipping glazes that go on silky smooth and evenly and dry in seconds). If you already do this using recipes from the web, be careful. High-feldspar glazes (having more than about 35%) often craze. Ones that rely on high melt fluidity to encourage crystallization and variegation (often because of excessive Gerstley Borate, lithium carbonate, zinc or Frit), view these with suspicion for leaching and cutlery marking; test them well (also test the additionless versions). Be suspicious of any glaze not having good documentation.

The best approach is to begin with a good transparent base you understand and that fits. We supply (as products and recipes) G2926B glossy whiteware and G2934 matte frit-fluxed bases. Their documentation describes how to mix, use, fire and adjust them and showcases stain, color and variegator additions to create an infinite number of effects. The former, G2926B, may not have a enough melt fluidity to create non-food-surface reactive visual effects with certain colors and variegators. G3806C fluid-melt recipe is an alternative (but check for crazing). These pages also reference other base glazes that might be of interest.

Consider also making glazes based on Alberta Slip (especially the GA6-A amber base) and Ravenscrag Slip. These materials have their own websites with lots of helpful information.

Crazing: Functional ware must remain craze-free (crazing is unsanitary and drastically reduces ware strength). Because ware is not crazed out of the kiln does not mean it will not do so with time. Do cycles of a boiling water:ice water immersions (BWIW test) on a piece to test glaze fit (by stressing it to bring out any crazing or shivering tendencies).

Glaze slurry consistency and quality: A secret to achieving even glaze coverage is controlling the thixotropy and specific gravity of the slurry, both in freshly mixed and stored batches. A glaze of the right specific gravity and having a slightly gelled condition goes on to bisque ware evenly, does not drip and dries in seconds. Always screen glazes when first making them (80 mesh). Be alert to any particulate that may appear after storage (e.g. precipitates) and screen again if needed.

This body is a great candidate for the engobe process, we recommend the L3954B recipe.

If you want to develop and mix your own glazes and engobes consider getting an account at http://insight-live.com. You can organize a methodical development program and adopt better methods of testing (e.g. melt fluidity, thermal stress, slip-fit tests).

Casting Recipe

M340 has soluble salts that prevent the action of deflocculants so it cannot be slip cast. We have developed a casting body that is of similar color and maturity (made from refined materials). You can find information on it here.

Thermal Expansion

We do not supply a thermal expansion value. The reason is that such numbers often mislead users. First, a body has different thermal expansion characteristics when fired at different temperatures, schedules and atmospheres. Dilatometers are only useful when manufacturers can measure bodies and glazes over time and in the same firing conditions. If a chart is supplied here, please view only as a way to compare one body with another.

Another significant issue is that many customers compare measured thermal expansion numbers with calculated values of glazes in efforts to fits those glazes to a body. This does not work. Calculated values are relative only and have limitations that must be understood. The best way to fit glazes to your clay bodies is by testing, evaluation, adjustment and retesting. For example, if a glaze crazes, adjust its recipe to bring the expansion down (using your account at insight-live), fire a glazed piece and thermal stress it (using an IWCT test, 300F into ice-water). If it still crazes, repeat the process.

If we recommend a base clear or glossy glaze, try calculating the expansion of that as a rough guide to know whether your glazes will fit.

Thermal Expansion Chart. Average: 5.5.

Physical Properties

 Drying Shrinkage: 6.0-7.0%
 Dry Strength: 800 psi
 Water Content: 20.0-21.5%
 Drying Factor: C120
 Dry Density: 2.0

Sieve Analysis (Tyler mesh):

     +48: 0.0-0.1%
   48-65: 0.4-0.8
  65-100: 1.5-2.5
 100-150: 1.5-2.5
 150-200: 4.0-6.0

Fired Shrinkage:

 Cone 4: 4.0-5.0%
 Cone 5: 4.5-5.5
 Cone 6: 5.0-6.0
 Cone 7: 5.5-6.5

Fired Absorption:

 Cone 4: 4.0-5.5%
 Cone 5: 2.5-4.0
 Cone 6: 1.5-2.5
 Cone 7: 1.0-2.0

Chemical Analysis

 CaO       0.2
 K2O       2.1
 MgO       1.2
 Na2O      0.1
 TiO2      0.6
 Al2O3    17.7
 P2O5      0.0
 SiO2     69.2
 Fe2O3     1.4
 MnO       0.0
 LOI       7.5%

Gallery

M340 at cone 6. Kathy Ransom.

This mug is made from M340 and glazed with GA6-C Alberta Slip rutile blue (outside) and GR6-C Ravenscrag white (inside). By Tony Hansen.

M340 with GA6-A base Alberta Slip glaze. However this one employs frit 3195 instead of 3134. A slow cool produced a flawless surface.

A very deep and rich blue (with no cobalt). This is M340 fired to cone 6. Black-firing L3954B engobe (having 10% Burnt Umber instead of the normal 10% Zircopax) was applied inside and partway down the outside (at the stiff leather hard stage). The incising was done after the engobe dried enough to be able to handle the piece. The glaze is GA6-C Alberta Slip rutile blue.

Safety Data Sheet

Click here for web view.

Logo Plainsman Clays Ltd.
702 Wood Street, Medicine Hat, Alberta T1A 1E9
Phone: 403-527-8535 FAX:403-527-7508
Email: plainsman@telus.net